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Abstract 

The topic of Markov chains is a synthesis of Probability and matrix theory enabling one to tackle 

mathematically a variety of problems characterized by randomness and connected to many sectors of 

the human activity. In this work a finite Markov chain is introduced representing mathematically the 

teaching process which is based on the ideas of constructivism for learning. Interesting conclusions are 

derived and a measure is obtained for the teaching effectiveness. An example on teaching the derivative 

to fresher university students is also presented illustrating our results. 
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1. Introduction  

Learning is the most important component of the human cognition. Many theories and models have been 

developed by the experts on the field for analyzing the process of learning, explaining its mechanisms 

and make it accessible to everyone. Constructivism is a relatively recent theory for learning, which is 

based on Piaget’s ideas on the subject. This theory was formally introduced by von Clasersfeld during the 

1970’s. According to it, knowledge is not passively acquired from the environment, but is actively 

developed by the learner through a process of adaptation based on and constantly modified by the 

learner’s experience of the world (Taber, 2011). As a result of the failure of the introduction of “new 

mathematics” in basic education, the application of the ideas of constructivism in the teaching process 

has become very popular during the last decades, especially in school education. The steps of a typical 

method of teaching which is based on the principles of constructivism are the following: 

 Engagement (S1): This is the first step of the learning process connecting the past with the 

present learning situations and orienting student reasoning on the learning conclusions of the current 

activities. 

 Investigation (S2): Here students study and investigate the environment on the purpose of 

creating a common set of relative to the learning subject experiences by determining and constructing 

notions, procedures and the necessary skills. 

 Explanation (S3): In this step students explain, analyze and formalize the notions that have 

been constructed in the previous step, while the teacher introduces formal terms, definitions and 

explanations for the new concepts and processes and demonstrates new skills. 

 Deeper Understanding (S4): In that step students develop a deeper and broader conceptual 

understanding and obtain more knowledge about the new acquired information through elaboration and 

practice on the new topic. 

 Evaluation (S5): In the last step of the learning process, students are encouraged to evaluate 

with the help of the given by the teacher homework their understanding and abilities on the new topic, 

while the instructor assess with oral and written tests and/or questions the student performance on the 

new topic. 
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Depending on the student reactions in the classroom, there are forward or backward transitions between 

the three intermediate steps (S2, S3 and S4) of this framework during the teaching process, the 

flow-diagram of which is shown in Figure 1.  

 

 

Figure 1. The Flow-diagram of the Teaching Process 

 

Note that the three intermediate steps S2, S3 and S4 of the teaching model developed above appear 

analogous to the phases of exploration, formalization and assimilation respectively for the process of 

learning Mathematics presented by G. Polya in his famous two volume book “Mathematical 

Discovery” (Wiley: NY, 1962/65). 

In this article a Markov chain is introduced on the steps of the teaching process and through it 

interesting conclusions are derived for the teaching effectiveness. The rest of the article is formulated as 

follows: The next section provides a brief account of the basic principles of the theory of finite Markov 

chains, which is necessary for the better understanding of the contents of this work. In section 3 an 

absorbing Markov chain model is developed for the teaching process based on the principles of 

constructivism. The model is illustrated by an example on teaching the derivative to a group of fresher 

university students. Section 3 closes with an important remark connected to a different technique used 

in an author’s earlier work for modelling the teaching process by using an ergodic Markov chain. The 

general conclusions of this study are stated in section 4, the last section of the article.  

2. Markov Chains 

A simple way to define a Markov chain (MC) is the following: A MC is a process depending on a 

random variable that takes values from a set of states which move in a sequence of steps (phases), and 

having memory of one step only. This means that the probability of the random variable to enter a 

certain state in a certain step depends on the state occupied in the previous step and not in earlier steps. 

This is called the Markov property. In practice, however, in order to be able to model as many cases as 

possible by using MCs, one may accept that the probability of entering a certain state in a certain step, 

although it could not be completely independent of previous steps, it mainly depends on the state 

occupied in the previous step (Kemeny, 1962).  

The basic concepts of MCs were introduced by Andrey Markov (Figure 2) in 1907 on coding literal 

texts. Since then the MC theory was developed by a number of leading mathematicians, such as A. 

Kolmogorov, W. Feller, etc. However, only from the 1960’s the importance of this theory to the natural, 

social and applied sciences has been recognized (Suppes & Atkinson, 1960; Bartholomew, 1976; 

Kemeny & Snell, 1976; Domingos & Lowd, 2009; Zucchini, MacDonald, & Langrock, 2009; Davis, 

2017). 

 

 

Figure 2. A. Markov (1856-1922) 
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2.1 Finite Markov Chains 

A MC with a finite set of states is called a finite MC. For general facts on finite MCs we refer to 

Chapter 2 of the book (Voskoglou, 2017). Let us consider a finite MC having n states, say S1, S2, …, Sn, 

with n a nonnegative integer, n 2. Denote by pij the transition probability from state Si to state Sj , i, j 

= 1, 2,…, n ; then the matrix A= [pij] is called the transition matrix of the MC. The transition from a 

state to any other state (including its self) is the certain event, therefore it turns out that, for all i =1,…,n, 

is 

1 2 ..  1 (1)i i inp p p                               (1) 

The row-matrix Pk = [p1
(k) p2

(k)… pn
(k)], called the probability vector of the MC, gives the probabilities 

pi
(k) for the MC to be in state i at step k , for i = 1, 2,…, n and k = 0, 1, 2,… It becomes obvious again 

that 

( )
1

( ( )
2

)  .  1 (2)k k k
np p p                              (2) 

Using conditional probabilities on can show (Voskoglou, 2017; Chapter 2, Proposition 1) that for all 

nonnegative integers k is 

Pk+1= Pk A                                 (3) 

Therefore an induction on k gives that, for all integers k 1 is 

0 k
kP P A                                  (4) 

Equations (3) and (4) enable one to make short run predictions for the evolution of the corresponding 

phenomenon which is represented by the MC. In practice most problems involving the use of MCs can 

be solved by distinguishing between two types of finite MCs, the absorbing MCs (AMCs) and the 

ergodic MCs (EMCs). 

2.2 Absorbing Markov Chains 

A state of a MC is called absorbing if, once entered, it cannot be left. Further a MC is said to be an 

AMC if it has at least one absorbing state and if from every state it is possible to reach an absorbing 

state, not necessarily in one step. 

Working with an AMC with k absorbing states, 1  k < n, one brings its transition matrix A to its 

canonical (or standard) form A*
 by listing the absorbing states first and then makes a partition of A* to 

sub-matrices as follows 

A* = 

|

|

|

kI O

R Q

 
 
 

 
  

                               (5) 

In the above partition of A*, Ik denotes the unitary k X k matrix, O is a zero matrix, R is the (n – k) X k 

transition matrix from the non-absorbing to the absorbing states and Q is the (n – k) X (n – k) transition 

matrix between the non-absorbing states. 

It can be shown (Voskoglou & Perdikaris, 1991; Section 2) that the square matrix In – k - Q, where In – k 

denotes the unitary n-k X n-k matrix is always an invertible matrix. The fundamental matrix N of the 

AMC is defined to be the inverse matrix of In–k – Q. Therefore (Morris, 1978; Section 2.4) 

N = [nij] = (In – k – Q) – 1 = 
1

( )
( )

n k

n k

adj I Q
D I Q








                (6) 

In equation (6) D (In – k – Q) and adj (In–k – Q) denote the determinant and the adjoin of the matrix In – 

k – Q respectively It is recalled that the adjoin of a matrix M is the matrix of the algebraic complements 

of the transpose matrix Mt of M, which is obtained by turning the rows of M to columns and vice versa. 

It is also recalled that the algebraic complement mij΄of an element mij of M is calculated by the equation 
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mij΄ = (-1)i+jDij                                 (7) 

In equation (7) Dij denotes the determinant of the matrix obtained by deleting the i-th row and the j-th 

column of M. 

It is well known (Kemeny & Snell, 1976; Chapter 3) that the element nij of the fundamental matrix N 

gives the mean number of times in state Si before the absorption, when the starting state of the AMC is 

Sj, where Si and Sj are non-absorbing states. 

2.3 Ergodic Markov Chains 

A MC is said to be an EMC, if it is possible to move, in one or more steps, between any two states. As 

the number of its steps tends to infinity (long run), an EMC tends to an equilibrium situation, where the 

probability vector Pk takes a constant price P = [p1 p2 … pn], called the limiting probability vector of 

the EMC (Kemeny & Snell, 1976; Theorem 5.1.1). Therefore, in the equilibrium situation we have, by 

equation (3), that 

P PA , where p1+ p2+ …+ pn = 1                  (8) 

The limiting probabilities of the row-matrix P are the probabilities for the EMC to be in each of its 

states in the long run, thus expressing the importance (gravity) of each state of the EMC. 

Further, if mij is the mean number of times in state Si between two successive occurrences of the state 

Sj, i, j = 1, 2, …, n, we have (Kemeny & Snell, 1976; Theorem 6.2.3) that 

 9i
ij

j

p

p
m 

                                 (9) 

In equation (9) pi and pj are the corresponding limiting probabilities.  

3. A Markov Chain Model for the Teaching Process 

3.1 The Model 

We define a finite MC having as states Si, i = 1, 2,…, 5, the corresponding steps of the teaching process 

as they have been defined in section 1. From the flow-diagram of Figure 1 it becomes evident that this 

chain is an AMC with S1 being its starting state and S5 being its unique absorbing state. The minimum 

number of steps before the absorption is 4 and this happens when we have no backward transitions 

between the three middle states S2, S3 and S4 of the chain. Denote by pij the transition probability of the 

MC from state Si to state Sj, for i, j =1, 2,…,5. Then the transition matrix A of the chain is equal to 

1 2 3 4 5S S S S S  

A = 

1

2

3

4

5

S

S

S

S

S

32 34

43 45

0 1 0 0 0

0 0 1 0 0

0 0 0

0 0 0

0 0 0 0 1

p p

p p

 
 
 
 
 
 
  

, with p32 + p34 = p43 + p45 = 1 
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The transition matrix can be written in its canonical form A* as follows: 

5 1 2 3 4S S S S S  

A*= 

5

1

2

3

4

S

S

S

S

S



32 34

45 43

1 | 0 0 0 0

0 | 0 1 0 0

0 | 0 0 1 0

0 | 0 0

| 0 0 0

p p

p p

 
 
     

 
 
 
 
 
 
  

= 

1 |

|

|

I O

R Q

 
 
 
 
  

. 

Denote by I4 the 4X4 unitary matrix. Then the fundamental matrix of the AMC is 

N = [nij] = (I4 – Q) – 1 = 

34 43 32 34 32 34

34 34 34

32 3434 43 32

32 43 43 32

1 1 1

0 1 11

0 11

0 1

p p p p p p

p p p

p pp p p

p p p p

   
 

   
 
  
 

    

  

Therefore, since S1 is the starting state of the above AMC, it becomes evident that the mean number of 

steps before the absorption is given by the sum 

T= n11 + n12 + n13 + n14 = 
43 34 32 34

34 43 32

3 2

1

p p p p

p p p

  

 
                 (10) 

It becomes also evident that the bigger is T, the more are the student difficulties during the teaching 

process. Another indication of the student difficulties is the total time spent for the completion of the 

teaching process. However, the time is usually fixed in a formal teaching procedure in the classroom, 

which means that in this case T is a measure of the student difficulties. 

3.2 A Classroom Application 

The application presented here took place at the Graduate Technological Educational Institute of 

Western Greece during the teaching of the derivative to a group of fresher students of engineering. The 

instructor used the teaching framework that has been described in our Introduction as follows: 

Engagement: The student attention was turned to the fact that the definition of the tangent of a circle as 

a straight line having a unique common point with its circumference does not hold for other curves 

(e.g., for the parabola). Therefore, there is a need to search for a definition of the tangent covering all 

cases and in particular of the tangent at a point of the graph of a given function. 

Investigation: The discussion in the class led to the conclusion that the tangent at a point A of the graph 

of a given function y=f(x) can be considered as the limit position of the secant line of the graph through 

the points Α(a, f(a)) and Β(b, f(b)), when the point Β is moving approaching to Α either from the left, or 

from the right (Figure 3). But the slope of the secant line AB is equal to ( ) ( )f b f a

b a




, therefore the slope 

of the tangent of the graph at A is equal to the limit of the above ratio when b tends to a. 
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Figure 3. Tangent at a Point of the Graph of a Given Function 

 

Explanation: Based on what it has been discussed at the step of investigation, the instructor presented 

the formal definition of the derivative number f΄(a) at a point Α(a, f(a)) of a given function y=f(x) as the 

limit (if there exists) of ( ) ( )f b f a

b a




 when a b , and of the tangent of the graph of y=f(x) at A as the 

straight line through A with slope f΄(a). Some examples followed of calculating the derivative at a 

given point of a function and the tangent of its graph at this point. Then the definition of the derivative 

function y΄ = f΄(x) of the function y=f(x) was given and suitable examples were presented to show that 

its domain is a subset of the domain of y=f(x). 

Deeper Understanding: Here the fact that the derivative y΄ = f΄(x) expresses the rate of change of the 

function y=f(x) with respect to x was emphasized and its physical meaning was also presented 

connected to the speed and the acceleration at a moment of time of a moving object under the action of 

a steady force. The fundamental properties of the derivatives followed (sum, product, composite 

function, etc.) as well as a list of formulas calculating the derivatives of the basic functions and 

applications of them. 

Evaluation: At the end of the teaching process a number of exercises and problems analogous to those 

solved in the classroom were given to students on the purpose of checking at home their understanding 

of the subject. A week later a written test was performed in the classroom enabling the instructor to 

assess the student progress. 

It has been observed that the student reactions during the teaching process led to 2 transitions of the 

discussion from state S3 (formalization) back to state S2 (exploration). Therefore, since from state S2 

the chain moves always to S3 (Figure 1), we had 3 in total transitions from S2 to S3. The instructor also 

observed 3 transitions from S4 (assimilation) back to S3. Therefore, since from state S3 the chain moves 

always to state S4 (Figure 1), we had 4 in total transitions from S3 to S4. In other words we had 3+3 = 6 

in total “arrivals” to S3, 2 “departures” from S3 to S2 and 4 “departures” from S3 to S4. Therefore p32 

= 2

6
 and p34 =

4

6
. In the same way one finds that p43 =

3

4
 and p45 =

1

4
. Replacing the above values of 

the transition probabilities to equation (10) one finds that the mean number T of steps before the 

absorption of the MC is equal to 14. Consequently, since the minimum number of steps before the 

absorption is 4, the students faced significant difficulties during the teaching process. This means that 

the instructor should find ways to improve his teaching procedure of the same subject in future. 
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3.3 An Important Remark 

In certain cases it is possible to develop either an AMC or an EMC model for representing the same 

situation. In case of the teaching process, for example, the flow diagram of Figure 1 could be revised 

by assuming that, when the teaching process of a subject matter is integrated, then a new process starts 

by the instructor for teaching the next subject of the course. That means that the teaching process is 

transferred back from step S5 to S1 to be repeated from the beginning again. The revised flow diagram 

of the teaching process, therefore, takes the form of Figure 4. 

 

 

Figure 4. Revised Flow Diagram of the Teaching Process 

 

In this case the resulting MC on the steps of the teaching process is obviously an EMC.  Since S1 is 

the starting state of the EMC it becomes evident that the sum 15 25 35 45 m m m m m    calculates 

the mean number of steps of the EMC between two successive occurrences of the state S5. Therefore, 

the mean number of steps for the completion of the teaching process will be m+1, since it includes also 

the step S5. With the help of equation (9) one finds that 

  1 4 53

5 5

2 1p p p p p
m

p p

   
                           (11) 

The value of the limiting probability p5 is calculated with the help of the matrix equation (8). In this 

equation the transition matrix of the EMC differs from the corresponding matrix A of the AMC of 

section 3.1 only with respect to the last row, where 1 is transferred from the fifth to the first column and 

its other entries are 0. Performing the necessary calculations, equation (8) leads to a linear system of 

five equations with respect to the pi’s, i = 1, 2, 3, 4, 5. Adding by members the first four of those 

equations one finds the fifth one. Thus, replacing the fifth equation with the equation p1+p2+p3+p4+p5 

= 1 and solving the resulting 5X5 linear system one finds the required value of p5 and with the help of 

equation (11) calculates m (for more details see Voskoglou, 2019). It becomes evident that, the greater 

is the value of m the more the student difficulties during the teaching process. Concerning the 

classroom application of section 3.2, after performing all the necessary calculations one finds that m+1 

= T. 

4. Conclusion 

The application of the ideas of constructivism has become very popular during the last decades for 

designing teaching models. In this work the teaching process was modelled by introducing an AMC on 

its consecutive steps. This approach helps the teacher to evaluate the student difficulties and based on it 

to reorganize his/her plans for teaching the same subject in future. Although the theoretical 

development of the MC model is quite laborious, its final application is easy and straightforward. It 

requires only to count the backward movements among the three middle steps S2, S3 and S4 of the 

teaching process. MCs appear as a very promising tool for use in several other applications of 

Education (e.g., see Chapter 3 of Voskoglou, 2017) and especially for modelling the smart learning 

systems of Artificial Intelligence (Voskoglou, 2020). This could be proved as a very interesting 

suggestion for future research on the subject. 
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