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Abstract  

Discriminating causal clustering from inhomogeneity in point processes is of high interest for a variety of 

applications. We propose a simulation-based test based on the relative likelihood of Hawkes models, 

Poisson cluster models, and inhomogeneous Poisson models, and compare with the time reversal test of 

Cordi et al. (2017). Under general conditions, causal clustering can be distinguished from inhomogeneity 

with high accuracy using these tests, with the test proposed here exhibiting somewhat higher power in 

simulations. The methods are applied to crime data on reported shootings in Boston from 2015-2021, 

where strong evidence of retaliatory triggering of events is seen in certain areas.  

1. Introduction  

Discriminating causal clustering from inhomogeneity is one of the key problems in point process 

analysis. Indeed, Diggle (2014) describes this problem as one of the most important challenges currently 

facing point process analysts. Both causal clustering and inhomogeneity can lead to aggregation of points 

in certain locations, though the mechanisms for this aggregation have very different implications. Causal 

clustering, or triggering, refers to the situation where the random occurrence of a point causes other 

points to be more likely to occur in the near vicinity of space-time. Inhomogeneity refers to the case 

where, because of differences in the background environment, points are simply more likely to occur at 

certain locations of space-time than others. Discriminating between these two phenomena can be very 

difficult in practice.  

For example, suppose one is analyzing catalogues of reported gang-related violent crimes, and many 

occurrences are present in one spatial-temporal area. Is this aggregation of points due to the 

socio-economic and geographical circumstances in the particular location, in which case the explanation 

is inhomogeneity? Or is the aggregation due at least partly to retaliation, where one such crime that just 

happens to occur in the region may spark several retaliations, each of which might yield further 

retaliations, and so on, in which case the explanation is triggering?  

One approach suggested in Diggle (2014) is to observe the point process repeatedly and inspect whether 

the clustering of points appears to occur predominantly in the same spatial-temporal locations, in which 

case inhomogeneity is the dominant paradigm. However, very often in practice, obtaining repeatedly 

observed point process data is not feasible. Furthermore, it is possible for a process, such as a Poisson 

cluster process, to exhibit aggregation of points at certain random hot-spots, which may be different in 

each realization, yet the aggregation of points is still not causal in the sense of individual points triggering 

others as in a Hawkes process.  

An approach taken in Park et al. (2021) is to attempt to fit a Hawkes model with both inhomogeneity and 

triggering, and where the spatially and temporally varying background rate is modeled as accurately as 

possible, for instance using kernel smoothing of previously occurring points as well as covariate 

information that may influence the background rate, such as demographic information on each census 

tract. The idea is that if the inhomogeneity is accurately modeled via the background rate, then any 

triggering estimated in the resulting Hawkes model may be attributed to causal clustering. While this idea 

is sensible, it can be difficult to assess whether the background rate indeed accurately models all the 

inhomogeneity in the spatial-temporal environment, and any inhomogeneity not adequately captured by 

the model will leak into the estimated triggering function and be incorrectly characterized as causal 
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clustering.  

An idea explored in Cordi et al. (2017) is to fit a Hawkes model to the data and another to the data with 

the times reversed. If the model fits significantly better to the forward time data, then this suggests the 

aggregation of points may indeed be causal, whereas if the model fits equally well with the times 

reversed, then the aggregation is most likely due to inhomogeneity. The idea is that typically in 

applications it would make no sense for points to trigger the occurrence of prior points, so the 

observation that a Hawkes model fits as well to the time-reversed data as it does to the forward-time data 

is incompatible with actual causal clustering but is consistent with the notion that the Hawkes model’s 

background rate term is not accurately describing the inhomogeneity in the process and thus incorrectly 

classifying some of the inhomogeneity as triggering. While the idea of Cordi et al. (2017) is very clever, 

its extension to the case where the inhomogeneity may vary over space instead of (or in addition to) time 

is problematic. Also, in some cases, a process with truly causal clustering might have the property that a 

Hawkes model fits equally well with the times reversed.  

Previous research on causality in point processes has focused on different elements of causal inference 

from the causal ideas that this paper explores. For instance, Xu et al. (2016) studied Granger causality 

within Hawkes processes. Here, we focus on the discrimination between causal clustering and 

inhomogeneity, in order to identify whether clustering identified by a fitted Hawkes model is real, or 

whether it may more aptly be explained merely as an artifact of an inhomogeneous environment.  

The main idea explored here is to fit both a Hawkes model with causal clustering as well as non-causal 

models as similar as possible to the Hawkes model but without causal clustering, such as Poisson cluster 

and inhomogeneous Poisson models, and compare how these models fit. This allows one to quantify the 

degree of causal clustering in the data, and, if the Hawkes model fits significantly better than the 

alternative models without causal clustering, then this is potentially strong evidence that the causal 

triggering identified by the Hawkes model is real.  

We consider formal hypothesis tests using the log-likelihood statistic to determine if a Hawkes model fits 

significantly better than Poisson cluster or inhomogeneous Poisson alternatives, and a similar test is 

performed using the time-reversal method. Both the time reversal test and the model comparison tests are 

applied to simulated spatial-temporal point processes to quantify the accuracy in identifying causal 

clustering models. Following this, these methods are applied to reported shooting data from Boston. The 

analysis for the simulated data show that accuracy in correctly identifying causal structures is generally 

very high under most conditions. The application to the reported Boston shootings data suggest that there 

is indeed causal triggering in certain locations, perhaps due to retaliatory crime activity.  

2. Background on inhomogeoeus Poisson, Hawkes, and Cluster processes  

A spatial-temporal point process N on S = R2 × R is a random collection of points such that for any 

bounded Borel subset B of S, the number of points that are within B is some finite number, which is 

denoted as N(B) (van Lieshout, 2019; Daley and Vere-Jones, 2003). A point process is simple if with 

probability one, all its points are distinct. Such point processes can be defined by their conditional 

intensity,  

  λ(x, y, t|Ht) = lim E[N((Bx,y,δxy ×[t,t+δt)|Ht)]/δxyδt ,  

                     δx ,δy ,δt →0  

where Bx,y,δxy is a ball of area δxy around the location (x, y) and Ht is defined as the history of the 

process up to time t.  

If N is a simple point process whose conditional intensity λ varies with x, y, and t but λ(x, y, t) does not 

depend on what points have occurred previously, then N is an inhomogeneous Poisson process. Such 

processes embody the notion that aggregation of points is due to inhomogeneity only. In the context of 

crimes, an inhomogeneous Poisson model may allow the rate of points at any particular location and time 

to depend on the socio-economic features of the location in question, but would not incorporate 

retaliatory behavior in the model.  

A Hawkes process is referred to as a "self-exciting" process, in that a point may trigger future points in its 
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spatial-temporal vicinity. This type of model has often been used to describe clustered phenomena such 

as earthquakes and infectious diseases (Ogata, 1988; Reinhart, 2018; Meyer et al., 2012). According to 

the Hawkes model, parent points occur according to a background inhomogeneous Poisson process, μ(x, 

y, t). These parent points then produce offspring according to some triggering density h and some 

productivity value κ, the latter of which represents the expected number of points triggered by any given 

point. Once the parent points have produced offspring, those offspring trigger further offspring, and so on. 

The conditional intensity is thus given by  

   λ(x,y,t) = μ(x,y,t)+κ ∑ h(x−xi,y−yi,t−ti) .  

           i:ti <t  

A Poisson cluster process is a clustering model defined in a two-part process. First, "parent" points are 

distributed throughout the spatial-temporal domain. Each parent point creates a random number with 

mean A of offspring points according to a specified triggering distribution, and the final process consists 

only of the offspring points (Neyman, 1939). Poisson cluster processes have been used to describe 

clustered spatial processes such as tree stands (Penttinen et al., 1992), rainfall (Guttorp, 1996), and 

galaxies (Snethlage et al., 2002), and typically the triggering density is symmetric so that offspring are 

distributed around their parents according to some isotropic density. Here, we consider the 

spatial-temporal context where the offspring points are distributed around their parents isotropically in 

space and time, meaning the parent points generate offspring occurring both before and after their parents. 

Thus the aggregation in such a Poisson cluster process is causal but is not physically sensible for 

applications where a point cannot trigger prior points, and we will be using such models not for their 

physical plausibility but purely for purposes of comparison with Hawkes processes. The conditional 

intensity of a Neyman-Scott process is difficult to write in condensed form (Møller and Waagepetersen, 

2004; Zhuang, 2018), but can readily be estimated via maximum likelihood, minimum contrast, or other 

methods, despite occasional difficulties with convergence failure or numerical instability (Baddeley et al., 

2022).  

3. Methods  

For a point process with conditional intensity λ(x, y, t) and with points denoted as τ1 = (x1,y1,t1),...,τn = 

(xn,yn,tn), the likelihood can be expressed as  

  ∏ λ(τi) exp [− ∫ λ(x,y,t)dxdydt ] ,   

              1≤i≤n              S  

where S is the spatial-temporal observation region. Therefore, estimating the likelihood becomes a 

process of calculating the intensity at each observed point, then calculating the integral of the conditional 

intensity over the observation region. In practice, calculation of the conditional intensities is quite 

straightforward, though approximation is often necessary to compute the integral of the conditional 

intensity (Harte, 2012).  

For formal comparison of models, a hypothesis test method based on the expected information gain per 

trial is performed. The expected information gain per trial is a measure of the change in entropy scores 

from a null model and an alternate model (Daley and Vere-Jones, 2003). This information gain is a 

measure of the predictive performance of a model in terms of predicting the next occurring point within 

the point process, and is closely approximated by the mean log-likelihood ratio (Harte and Vere-Jones, 

2005),  

   ̂N = log (L1 / L0 ) / N
 
 

where L1 is the likelihood of the alternate model, L0 is the likelihood for the null model, and N is the total 

number of points observed.  

We consider a test with the following hypotheses.  

  H0: The degree of causal clustering is 0.  

  Ha: The degree of causal clustering is greater than 0.  
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We propose considering the log likelihood ratio  ̂N of a fitted Hawkes model and a fitted Poisson cluster 

model as a test statistic, and refer to this in what follows simply as a likelihood ratio test. Suppose the 

significance level α = .05. By design, if the data truly arise from a Poisson cluster model, then the test will 

reject the null hypothesis H0 with probability 5%.  

The idea, however, is that such a formal test may also be useful when the data may arise from an 

inhomogeneous Poisson model, since in such cases the Hawkes model would not be expected to fit 

significantly better than the non-causal Poisson cluster model and thus the test may be expected often to 

fail to reject the null hypothesis that the non-causal Poisson cluster process is the generating mechanism. 

In the next section, using simulations, we consider the case where the data are generated via a Hawkes 

process. In order to obtain an approximate sampling distribution for the information gain statistic under 

the null hypothesis, the following Monte Carlo technique is used.  

For each test performed in what follows, a non-causal Poisson cluster model was fit by maximum 

likelihood estimation to to the corresponding data or simulated data, and then realizations of non-causal 

Poisson cluster models were simulated re-peatedly with parameters equal to these maximum likelihood 

estimates, to create a sampling distribution for the information gain statistic. For each simulation, the 

likelihood, L1, for a Hawkes model, and the likelihood L0, for a Poisson cluster model, were calculated, 

and used to calculate  ̂N. This creates a sampling distribution for the value of the information gain 

statistic, and the value of  ̂N for the actual data is then compared to this sampling distribution. If the 

information gain statistic from the data is higher than the 95th percentile of the simulated sampling 

distribution, then the null hypothesis is rejected, and otherwise the null hypothesis is not rejected. For the 

time-reversal test this procedure was repeated, but with L1 as the likelihood of the Hawkes model given 

the data and L0 as the likelihood of the Hawkes model with the times reversed.  

4. Simulations  

Hawkes processes are simulated in order to determine the power of the test, i.e. the fraction of times the 

test correctly rejects the null hypothesis of a Poisson cluster process in favor of the Hawkes model. We 

use a two-dimensional Gaussian distribution for the spatial triggering density, a truncated Gaussian 

distribution with a lower bound of 0 for the temporal triggering density, and a constant background rate μ. 

The spatial region is [0, 1] × [0, 1] and the temporal region is [0, 1].  

For each simulation, three likelihood values were calculated: the likelihood for the standard Hawkes 

process model, the likelihood for a Poisson cluster model, and then all the times were reversed and the 

likelihood was found for the "backwards" or "reversed" Hawkes process.  

A hypothesis test was performed on simulated point processes using the information gain statistic. By 

design, this test will fail to reject the null hypothesis with probability 95% when the simulated data come 

from a Poisson cluster model. When the simulated data come instead from an inhomogeneous Poisson 

model, the information gain test failed to reject the null hypothesis approximately 95% of the time as well. 

A variety of different Hawkes processes were simulated in order to investigate the power of the test. In 

particular, we investigated various different values for the background rate, μ, the productivity, κ, and the 

standard deviations, σt and σxy, of the temporal and spatial triggering densities, respectively. Each of these 

was allowed to vary. The range of tested values was chosen to be similar to the fitted Hawkes model for 

the application to crime data in Section 5.  

The dependence of the power on the productivity, κ, is shown in Figure 1. The Gaussian clustering test 

has much higher power than the time reversal test for nearly all values of κ. The power for the time 

reversal method increases as κ increases, before again decreasing after a peak at κ = 0.834.  

As shown in Figure 2, the Gaussian clustering test has very high power for all values of σt , though its 

power appears to decrease as the spatial triggering density gets more diffuse.  
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Figure 1: Power of Poisson cluster and Time-Reversal tests as a function of κ, for 100 simulated Hawkes 

processes with triggering rate κ, each with μ = 18, σt = .0002 and σxy = .0002, where for each simulated 

process, 100 Gaussian clustering processes were fit by MLE in order to obtain the sampling distribution  

 

 

Figure 2: Power of Poisson cluster and Time-Reversal tests as a function of σt, for 100 simulated 

Hawkes processes with temporal standard deviation σt, each with μ = 18, κ = .81, and σxy = .0002, 

where for each simulated process, 100 Gaussian clustering processes were fit by MLE in order to obtain 

the sampling distribution.  

 

The Poisson cluster test appears to have very high power for all values of σt, while the Poisson cluster test 

has lower power for higher values of σxy. For the time reversal tests, increasing σt or σxy tends to reduce 

power, most likely because as the standard deviations of the triggering densities increase, it is 

increasingly difficult to discern any meaningful clusters, and the points simply appear nearly uniformly 

distributed within the observation region. This makes distinguishing between different types of 

clustering more difficult. As shown in Figure 4, the power of the tests considered here does not appear to 

change very significantly as μ varies.The two tests have nearly equal power over all values of μ, with the 

Poisson cluster test having slightly higher power overall. Overall, the power of the Poisson clustertest is 

84.4% and the power of the reversal test is 74.4%.  
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Figure 3: Power of Poisson cluster and Time-Reversal tests as a function of σxy, for 100 simulated 

Hawkes processes with spatial standard deviation σxy, each with μ=18, κ=.81, and σt =.0002,wherefor 

each simulated process, 100 Gaussian clustering processes were fit by MLE in order to obtain the 

sampling distribution.   

 

 

Figure 4: Power of Poisson cluster and Time-Reversal tests as a function of μ, for 100 simulated Hawkes 

processes with background rate μ, each with κ = .81, σt = .0002 and σxy = .0002, where for each 

simulated process, 100 Gaussian clustering processes were fit by MLE in order to obtain the sampling 

distribution  

 

5. Application to Crime Data  

5.1 Data  

Recorded data on 8,862 reported illegal shootings in Boston between 2015 and 2021 were collected from 

the public data source for the Boston government (https://data.boston.gov/dataset/shootings). Figure 5 

shows a kernel smoothing of the locations of these reported crimes.  

The data were divided into uniform 10 × 10 grid cells, each analyzed individually using the tests 

described in Section 3. Grid cells including less than 5 points were excluded from the analysis as the tests 

have insufficient power in such cases.  
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5.2 Results  

Figure 6 shows the results of the Poisson cluster hypothesis test. The results suggest that for the majority 

of locations in Boston, there is significant causal clustering present in the data on recorded shootings. Of 

the grid sections that were included within the analysis, 84.6% resulted in the test rejecting the null 

hypothesis, and these sections contained 83.7% of the total reported shootings. At the same time, there 

are several locations, especially on the Northwest borders of the data set, where the test fails to reject the 

null hypothesis and suggests that the local aggregation of points in these locations may be entirely due to 

inhomogeneity.  

The time reversal test results, shown in Figure 7, have far more grid cells where the test fails to reject the 

null hypothesis. The time reversal test only rejected the null hypothesis in 44.2% of the grid cells, 

corresponding to a total of 46.8% of the reported shootings. The majority of grid cells where the Poisson 

cluster test failed to reject the null hypothesis also had the time reversal test fail to reject the null 

hypothesis, again suggesting inhomogeneity as the dominant cause of aggregation of points in these 

areas.  

5.3 Analysis  

The results of the Poisson cluster test indicate that, in the vast majority of locations within Boston, the 

reported shooting data from 2015-2021 are significantly better fit by a Hawkes model with causal 

clustering than by a Gaussian clustering model. Since the test fails to reject about 95% of the time when 

either a Gaussian clustering model or inhomogeneous Poisson model is the actual data generating 

mechanism, the results suggest that the clustering in these points is truly causal.  

 

 

Figure 5: Spatially smoothed density plot of Boston shooting data  

 

The results provide evidence that a Hawkes model with causal clustering may be appropriate for certain 

shooting data. However, there are still some areas, especially near the Northwestern borders of the 

observation region, where causal clustering is not indicated. This could possibly be due to spatially 

varying covariates, differences in gang territory, or other factors resulting in more causal clustering in 

certain locations rather than others.  
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Figure 6: Each dot represents a single shooting within a grid, and the data points within each grid 

section have been colored based on the result of the Poisson cluster hypothesis test within that grid 

section.  

 

The Poisson cluster and time reversal tests resulted in substantially different classifications. One possible 

explanation for this can be seen in the power analysis indicated by the simulations, since the Poisson 

cluster test had higher power than the time reversal test in most cases. Therefore, the reason that so many 

more sections failed to reject the null hypothesis using the time reversal test could be because the power 

of this test was too low.  

6. Conclusion  

Distinguishing between causal clustering and inhomogeneity in point processes is still a problem 

requiring much further study. Simulations show that under certain conditions, a simulated Hawkes model 

can be correctly distinguished from a Poisson cluster model using the information gain statistic, and 

furthermore, the test appears to have high power in distinguishing a Hawkes model from an 

inhomogeneous Poisson model as well. The time reversal test, by contrast, has somewhat lower power. 

This power is affected by the parameters of the simulation, with larger data sets and more intense 

clustering resulting in higher power for both tests.  

 

 

Figure 7: Each dot represents a single shooting within a grid, and the data points within each grid 

section have been colored based on the result of the time reversal hypothesis test within that grid section.  
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Hawkes models have been used extensively in crime data analysis, typically without much investigation 

into whether or not the assumption of causal clustering is indicated. Models without causal clustering, 

such as inhomogeneous Poisson models or Poisson cluster models, may fit just as well to the data in some 

situations. However, with regard to the application to the recorded shooting data in Boston, our results do 

suggest strong evidence of causal clustering in most areas of the city.  

Future research should investigate this evidence of causal clustering further. Here, we considered 

Gaussian triggering functions for both the Poisson cluster and Hawkes model, but alternative triggering 

functions could be considered. In addition, we allowed each spatial grid cell to have its own background 

rate, to account for spatially varying covariates such as poverty levels or education levels. Future work 

could alternatively model the background crime rate more more explicitly as a function of such 

socio-economic covariates, as in Park et al. (2021). In addition, other types of reported crime data should 

be analyzed and the relationship between different types of crimes and the strength of evidence of causal 

clustering should be studied.  
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